Electron Paramagnetic Resonance of Cu²⁺ Doped Na₂HAsO₄·7H₂O Single Crystals

F. Köksal, İ. Kartal, and A. Gençten^a

Physics Department, Faculty of Arts and Sciences, Ondokuz Mayıs University, Samsun, Turkey
^a Science Education Department, Faculty of Education, Ondokuz Mayıs University, Samsun, Turkey

Z. Naturforsch. **53 a,** 779–782 (1998); received May 5, 1998

The electron paramagnetic resonance spectra of Cu^2 doped $Na_2HAsO_4\cdot 7H_2O$ single crystals were studied at room temperature. The results indicate the substitutional entrance of Cu^2 in two magnetically inequivalent Na^+ sites. Charge compensation is supposed to be fulfilled by proton vacancies. The spin Hamiltonian parameters were determined. The ground state for Cu^2 seems to indicate the dominance of the d_{z^2} orbital and therefore a compression of the distorted octahedron along its C_{4v} axis.

Key words: EPR; Cu²⁺; Sodium Hydrogen Arsenate.

Reprint requests to Dr. F. Köksal; Fax: +90 3624 576081.